BROADBAND LINEAR AMPLIFIER

Model F10A

OUTPUT VOLTAGE

±100V
185 mA

FIXED GAIN

10x

BROADBAND

DC to ca 1 MHz
FULL SCALE

HIGH SLEW RATE

400 V/µs

LOW OUTPUT IMPEDANCE

<0.1 Ω
GENERAL DESCRIPTION

The F10A is a general purpose linear amplifier designed for laboratory use. It is based on a fast high-voltage operational amplifier with a feedback network chosen to give a voltage amplification of 10 times. Any function or arbitrary waveform generator with output voltage up to ±10 V can be used as an input device.

This device outputs high voltage signals at high frequency. It is, thus, imperative for the safe operation that the user understands the possibilities and limitations of the instrument. Isolated BNC output connector is used to comply with safety requirements.

INPUT AMPLITUDE

The amplitude of the input signal should normally be kept within ±10 V. The input protection network limits the signal amplitude delivered to the power amplifier to a safe value. It also effectively cuts accidental spikes and overshoots. However, large and/or prolonged overvoltage at the input may blow the microfuse in the input protection circuit. (A spare fuse is provided inside the instrument. If possible, contact service@pendulum-instruments.com for advice before opening the instrument case.)

Keep input signals within ±10 V range.

Never connect the high voltage output to the input of the instrument!

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Condition</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>No output</td>
<td>Power switch is not lit</td>
<td>Check the mains fuse located on the back</td>
</tr>
<tr>
<td>No output or very small,</td>
<td>Power switch OK</td>
<td>Check the input microfuse located inside the device.</td>
</tr>
<tr>
<td>distorted signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant high voltage</td>
<td>Without any input signal</td>
<td>Amplifier failure. Contact service@pendulum.se</td>
</tr>
<tr>
<td>output</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
You should suspect a blown input microfuse if the output is about zero or the amplifier is producing a very low voltage, distorted copy of the input signal (due to the capacitive coupling through the blown fuse).

Spare microfuses are provided inside the instrument. They look like small metal cans and are placed in white holders. The resistance of a good fuse is in the order of 46 ohm. It is imperative to disconnect the power cable and wait at least a minute before opening the case. If possible, contact service@pendulum-instruments.com for advice.

LOAD

The amplifier is intended to drive resistive and/or small capacitive loads. The maximum capacitive load depends on the slew rate of the amplifier. This is normally set at the factory to 400 V/µs which yields the load limit of 400 pF. This limit includes the capacitance of the connection cable (ca 100 pF/m for a standard coaxial cable). Increasing the capacitive load may cause an overshoot to appear. If this is not acceptable then the slew should be reduced accordingly. Such an adjustment may be performed by qualified personnel and the factory should be contacted for advice (preferably by email service@pendulum-instruments.com). Inside the cabinet exist hazardous voltage levels and the amplifier circuit is extremely sensitive to static discharge.

Pendulum Instruments recommends to monitor the output signal of the amplifier with an oscilloscope. It is then important to use a low capacitive probe with a division factor of at least 1/10.

Overloading the output may cause an overshoot which might be dangerous for connected devices.

The amplifier output is equipped with fast-recovery diodes for protection against high energy flyback and can be used to drive small (mH) inductances in series with resistance.

The amplifier cannot be used to drive a purely inductive load.

The continuous output current limit is 185 mA and the output power limit is ca 30 W. The output is equipped with a current limiting circuit that withstands accidental short-circuits. Prolonged short-circuiting may result in overheating of the amplifier.

The amplifier may be overheated when the output is short-circuited for a long time.
FREQUENCY RESPONSE

Full scale frequency response without load and with 400 pF load, respectively, is shown in the following diagram:
SUMMARY OF TECHNICAL DATA

Bandwidth: DC to about 1 MHz
Amplification: 10 times fixed (10.0066±0.18% at DC)
Load: type resistive || capacitive
Impedance: input 1 MΩ || 30 pF, custom values possible
output <0.1 Ω in the linear mode
Voltage: input nominal ±10 V
Current: output maximum 185 mA
Slew Rate: output ca 400 V/µs
Input protection fuse 15 mA (Littelfuse, part number 272.015)
one spare fuse provided inside the instrument,
additional fuses available from Littelfuse resellers or from Pendulum Instruments.

Operating Ambient Temperature: 0°C to 30°C
Storage Temperature: 0°C to 60°C
Relative Humidity: up to 90% (operation)
30% to 50% (storage)
Power Requirements: 100/110 V or 220/230 V, 50/60 Hz
Fuse: 100/110 V: 3.15 A (slow),
220/230 V: 2 A (slow)
Dimensions (H/W/L): 112 x 255 x 316 (mm)
Weight: 4 kg
Country of Origin: Poland

Note: Specifications apply to instruments operating at 23°C±5°C ambient temperature after 15 min. warm-up time. Due to ongoing product development, specifications are subject to change without notice.

WARNING It is not allowed to connect the 100...230V AC line power input of the amplifier to DC-AC converters or solid state AC generators with non-sinusoidal output.

Data sheet revision date: 21 December 2018
IMPORTANT

Inside the amplifier case exist dangerous voltage levels.

The instrument cannot be powered from a DC-AC converter nor from a solid-state AC generator with non-sinusoidal output.

Loads sensitive to voltage transients should be disconnected from the amplifier during power-up and power-down.

Never connect the output to the input of the amplifier!

The amplifier may be overheated if the output is short-circuited for a long time.

The maximum allowable capacitive load depend on the internal setting of the slew rate. Overloading the output is likely to cause overshoot. Slow down the amplifier to accommodate a larger load.

It is recommended to monitor the output signal of the amplifier on the oscilloscope.
WARRANTY

The Warranty Statement is part of the folder *Important Information* that is included with the shipment.

DECLARATION OF CONFORMITY

The complete text with formal statements concerning product identification, manufacturer and standards used for type testing is available on request.