
CNT-104S
Synchronizing 2x Multi-channel Frequency Analyzer CNT-104S for phase 				
comparison of up to 8x 1-pps signals

Author: Staffan Johansson

A P P L I C A T I O N N O T E

Background
CNT-104S is a Multi-channel Frequency Analyzer / Time Interval
Analyzer, capable of simultaneously measuring 4 parallel input sig-
nals. This multi-function feature can for example be used to phase-
compare 4x 1-pps signals in synchronization hubs using the four
parallel time-stamping engines running on the same time scale.

But if you would like to compare 8 different 1-pps signals, you can-
not simply just put 2x CNT-104S on top of each other, or mount 2x
CNT-104S side by side in a 19” 2U rack:

•	 	With 1x CNT-104S you could phase-compare 4x 1-pps pulses
•	 With 2x CNT-104S you can connect 8x 1-pps pulses, but

the timescale of the two CNT’s will be independent, and not
synchronized

•	 The procedure below will synchronize two CNT-104S to a
common timescale with 8 inputs

Basic principles:

To generate a common timescale, we will use the “ARMING on
block” feature in CNT-104S. When set, the Arming feature blocks
any input trigger event until the Arming event, when the timescale is
set to zero. The two CNT-104S are armed at exactly the same mo-
ment, resetting the timescale to zero in both units at the same time.

The 8 DUTs are thereafter timestamped relative to the arming
timestamp.

Subsequent Arming trigger events will be neglected when selecting
“Arming on block”

Downloading the measurement data from both units will give 8
timestamps with the same timescale, with an uncertainty of <3ns,
due to delay differences in the arming circuitry between the two
units, and residual delay difference in the two cables that should
have equal length.

When setting up this 8-channel parallel timestamping from a con-
troller using SCPI commands, the preferred measurement function
is “Function=TIMESTAMPS A, B, D, E” which simply returns the time-
stamp of each trigger event in each channel.

When using the GUI or Web Interface, the preferred measurement
function is “Time Interval Accumulated A, B, D, E” with file save of
measurement data and export to MS Excel for postprocessing.

Although the application note describes how to measure phase
between 1-PPS pulses, the same HW configuration can be used
to phase compare RF signals to 300 MHz. For input frequencies
<20MHz, every trigger event can be timestamped

For input frequencies >20MHz, phase samples will be made at set
sample interval down to 50ns

Figure 2. Set up for 8-channel phase comparison

 PENDULUM INSTRUMENTS | Synchronizing 2x Multi-channel Frequency Analyzer CNT-104S for phase comparison of up to 8x 1-pps signals2

Detailed set-up
•	 	Connect as shown in figure 2.
•	 Select Recall Default in both units (SETTINGS→USER

OPTIONS→RECALL DEFAULTS→YES)
•	 	Set-up both Frequency Analyzers for the synchronization

measurement.
•	 	Set Manual trigger levels at 50% of the pulse amplitude on

all inputs (SETTINGS→INPUTS→X→TRIGGER LEVEL =
MANUAL, ABSOLUTE TRIGGER LEVEL X = <Desired Trigger
Level Value>, where X is particular input)

•	 	Set 50 ohm input impedance for the 1-pps pulses
(SETTINGS→INPUTS→X→MPEDANCE = 50 OHM, where
X is particular input)

•	 	Set DC coupling for the 1-pps pulses
(SETTING→INPUTS→X→COUPLING = DC, where X is
particular input)

•	 	Set Measurement function Time Interval Accumulated
A,B,D,E (SETTINGS→MEASUREMENT→FUNCTION→	
TIME/PHASE->TIME INTERVAL ACC. A, B, D, E)

•	 	Set Sample Interval =0
(SETTINGS→MEASUREMENT→SAMPLE INTERVAL = 0)

•	 	Set desired Sample Count
(SETTINGS→MEASUREMENT→SAMPLE COUNT =
<Desired Sample Count Value>). E.g. 86401 samples means
a 1 day recording, 604801 means 1 week recording, and
2592001 samples means 1 month (30 days) recording.

•	 	Set up block arming.(SETTINGS→ARMING→SOURCE = EA,
ARM ON = Block)

•	 	Set up Pulse output in CNT-104S for 1s pulses.
(SETTINGS→PULSE OUTPUT ON, 1s period).

•	 	Enter HOLD mode.
•	 	Start measurement in SINGLE mode (up to 10 million 1-pps

values/channel can be sampled for 115 days)
•	 	The relative timescale will now start from 0 in both counters

simultaneously (Arming event)
•	 	Switch OFF Pulse output after start of measurement (that does

not affect the measurement, which will continue uninterrupted
until end of sample counts)

•	 	Save/stream the result file to e.g., MS Excel, and process the
result:

•	 	The result file has two columns; timestamp for start trigger on
A, Time Interval result value, TI(A-X).

•	 	The Arming event, the start of the time scale, has timestamp
T0 = 0

•	 	For every sample, DUT 1 has Timestamp T1. DUT 2, 3, and
4 has Timestamp T1+TI(A-B), T1+TI(A-D), T1+TI(A-E), where
TI(x-y) is the Time Interval value

•	 	DUT 5 has Timestamp T5. DUT 6, 7, and 8 has Timestamp
T5+TI(A-B), T5+TI(A-D), T5+TI(A-E)

Uncertainty in timescale between CNT-104S units is <3ns (typically 1
ns). The time from input arming edge to “ready for trigger” in any of the
units is <5ns, but the difference between units is < 3ns

(Uncertainty of individual channel offsets in each CNT-104S is <25ps
rms, which is neglectable compared to the arming uncertainty)

Enhancements – real-time UTC timescale
Create a real-time time-scale by using an external 1-pps UTC refer-
ence signal to arm the measurement. Then all timestamps will be
referenced to UTC, instead of the 1pps pulse output from Frequency
Analyzer number one.

The timescale uncertainy to UTC will be:

(Uncertainty of external 1-PPS) ± 3 ns

Enhancements – 6-channel timescale with 50ps (typ.)
uncertainty
The time scale uncertainty between the two CNT-104S in previous
8-channel example is <3ns. However, if we use one of the A,B,D,E
inputs in the CNT-104S units for arming instead of the Ext Arm in-
put, we can drastically reduce the timescale uncertainty from <3ns
to typically 50 ps. This is done at the expense of number of DUTs,
now maximum 6 DUTs instead of 8.

The HW setup is quite similar to the previous setup, except that
in the example below, we use input E in counter/analayzer #1, and
input A in counter/analyzer #2 as arming inputs. Then the time skew
between Arming to measurement inputs is reduced to <25ps rms in
each CNT-104S

Figure 3. 8-channel parallel timestamping with a real-time timescale
referenced to UTC

Figure 4. Setup for 6-channel parallel timestamping with typ. 50 ps
uncertainty in the timescale, vs. typ. 1ns for 8 channels

3

Conclusion
The CNT-104S Multi-Channel Frequency Analyzer, with or with-
out post-processing of the data files in e.g. MS Excel, Matlab, or
Stable32, can be used for several measurements common to syn-
chronization tests

•	 Phase comparisons of 4 or 8 sync sources
•	 	Verification, calibration and adjustment of period/pulse width

(1 PPS)
•	 	Wander parameters (TIE)
•	 	Short-term-stability test (ADEV)
•	 	Verification of frequency/period stability (finding

micro-glitches)
•	 	PLL parameter testing

Programming example (Python script)

This example demonstartes how to timestamp up to 8 x 1 PPS signals in parallel
using 2 synchronized CNT-104S

The setup is:
#
Common 10 MHz reference -> CNT-104S #1 Ext Ref IN
-> CNT-104S #2 Ext Ref IN
#
CNT-104S #1 Pulse Output -> power splitter -> CNT-104S #1 Ext Arm IN
-> CNT-104S #2 Ext Arm IN
#
DUT1 -> CNT-104S #1 input A
DUT2 -> CNT-104S #1 input B
DUT3 -> CNT-104S #1 input D
DUT4 -> CNT-104S #1 input E
DUT5 -> CNT-104S #2 input A
DUT6 -> CNT-104S #2 input B
DUT7 -> CNT-104S #2 input D
DUT8 -> CNT-104S #2 input E

import pyvisa as visa
from time import sleep

helpers

def cnt_connect_and_reset(resource_manager, ipv4: str):
 cnt = resource_manager.open_resource(f’TCPIP::{ipv4}::hislip0’)

 cnt_id = cnt.query(‘*IDN?’)
 print(f’Connected to: {cnt_id}’)

 # reset to the known default state
 cnt.write(‘*RST;*CLS’)

 return cnt

def cnt_check_errors(cnt, operation_name: str):
 error = cnt.query(‘:SYST:ERR?’)
 error_code = int(error.split(‘,’)[0])
 if error_code != 0:
 raise RuntimeError(f’{operation_name} failed: {error}’)

def cnt_configure(cnt, configuration: str):
 cnt.write(f’:SYST:CONF “{configuration}”’)

 cnt_check_errors(cnt, ‘Configuration’)

def cnt_set_format(cnt, configuration: str):
 cnt.write(f’:SYST:CONF “{configuration}”’)

CNT-104S Timer/Counter/Analyzer features

•	 	Multi-Channel Frequency Analyzer for parallel testing of 4
DUTs

•	 	Ultra-high resolution and speed
•	 	Built-in in TIE and ADEV measurements
•	 	And - last but not least – the CNT-104S provides a very cost-

effective solution for parallel test, replacing up to 4 traditional
timer/counters

 PENDULUM INSTRUMENTS | Synchronizing 2x Multi-channel Frequency Analyzer CNT-104S for phase comparison of up to 8x 1-pps signals

4

 cnt_check_errors(cnt, ‘Configuration’)

def cnt_start_measurement(cnt):
 # enable operation complete (OPC) bit in the status register
 cnt.write(f’*ESE 1’)

 # start the measurement
 cnt.write(‘:INIT;*OPC’)

def cnt_operation_complete(cnts):
 complete = True
 for cnt in cnts:
 stb = cnt.read_stb()
 if (stb & 32) == 0:
 complete = False

 return complete

def cnt_extract_timestamps_from_ascii(response: str):
 # ASCii format with timestamps is:
 # <VAL0>,<TS0>,<VAL1>,<TS1>,...
 # so all odd elements in the list are timestamps
 float_array = response.split(‘,’)
 timestamps = float_array[1::2]
 return [float(t) for t in timestamps]

def cnt_cleanup(cnts):
 for cnt in cnts:
 cnt.close()

main script

if __name__ == ‘__main__’:

 # Create VISA resource manager. In some cases you may need to specify dll/so
 # file of VISA implementation, for example:
 # rm = visa.ResourceManager(‘librsvisa.so’)
 rm = visa.ResourceManager()

 # CNT-104S that will provide common arming via Pulse Output
 cnt_1 = cnt_connect_and_reset(resource_manager=rm, ipv4=”10.40.15.23”)
 # 2nd CNT-104S
 cnt_2 = cnt_connect_and_reset(resource_manager=rm, ipv4=”10.40.15.26”)

 print(‘Configuring measurement...’)

 # configure common arming signal
 cnt_configure(
 cnt_1,
 ‘PulseOutputMode=PulseGenerator;’
 ‘PulseOutputPeriod=1.0;’
 ‘PulseOutputWidth=0.01’
)

 cnts = [cnt_1, cnt_2]
 inputs_to_measure = [‘A’,’B’,’D’,’E’]
 sample_count = 100

 for cnt in cnts:
 # measurement configuration
 cnt_configure(
 cnt,
 f’Function=Timestamps {“,”.join(inputs_to_measure)};’
 f’SampleCount={sample_count};’
 ‘SampleInterval=0.0’
)

 # arming configuration
 cnt_configure(cnt, f’StartArmingSource=EA; ArmOn=Block’)

 PENDULUM INSTRUMENTS | Synchronizing 2x Multi-channel Frequency Analyzer CNT-104S for phase comparison of up to 8x 1-pps signals

 PENDULUM INSTRUMENTS | CNT-104S Multi-Channel Frequency Analyzer5

www.pendulum-instruments.com

 # inputs configuration
 for input in inputs_to_measure:
 cnt_configure(
 cnt,
 f’TriggerMode{input}=Manual;’
 f’AbsoluteTriggerLevel{input}=0.3;’
 f’Coupling{input}=DC;’
 f’Impedance{input}=50 Ohm’
)

 # set ASCii format (for example code simplicity) with timestamps
 # note: in real life binary form (PACKed) is preferable most of the time
 cnt.write(‘:FORM ASC;:FORM:TINF ON’)

 print(‘Measurement configuration completed’)

 # start measurement
 for cnt in cnts:
 cnt_start_measurement(cnt)
 print(‘Measurement started’)

 # prepare timestamp storage
 series = []
 for _ in range(0, len(cnts) * len(inputs_to_measure)):
 series.append([])

 # fetch data in real time
 measurement_complete = False
 while True:
 if not measurement_complete:
 measurement_complete = cnt_operation_complete(cnts)

 # fetch all series one by one
 nothing_fetched = True
 dut_index = 0
 for cnt in cnts:
 for input in inputs_to_measure:
 samples=cnt.query(f’:FETCH:ARR? MAX, {input}’).strip()
 if len(samples) > 0:
 timestamps = cnt_extract_timestamps_from_ascii(samples)
 series[dut_index].extend(timestamps)

 dut_index += 1

 if nothing_fetched:
 if measurement_complete:
 print(‘Measurement completed’)
 break;

 # pace FETCh queries if no data is ready yet
 sleep(1.0)

 # print results
 print(‘Results:’)
 separator = ‘, ‘

 series_names = [f’DUT #{i + 1}’ for i in range(0, len(series))]
 header = separator.join(series_names)
 print(header)

 data = list(zip(*series))
 for row in data:
 print(separator.join([f’{t:0.17g}’ for t in row]))

© Pendulum Instruments 2025
20.10.2025 AN-04 rev.1
Specifications subject to change or improvements without notice.
4031.601.00461

